Innovation Pédagogique et transition
Institut Mines-Telecom

Une initiative de l'Institut Mines-Télécom avec un réseau de partenaires

Éducation artificielle ?

L’intelligence artificielle (IA) est partout, ou du moins, on entend parler de l’IA dans quasiment tous les domaines. L’éducation va-t-elle être révolutionnée par cette nouvelle composante ? Où en est-on dans les pratiques de l’IA au niveau de la gestion des formations et des apprentissages ? La machine va-t-elle réellement remplacer l’enseignant·e ?
Cette question est celle à laquelle je vais tenter de répondre après une veille et un intérêt pour le sujet depuis quelques mois. J’observe également le travail d’une étudiante en Master sur "L’impact de l’intelligence artificielle sur le métier de formateur".
Il est parfois difficile de détecter les difficultés de nos apprenant·e·s. Grâce à des algorithmes, l’IA peut s’avérer comme un recours intéressant. Mais, qu’est-ce que l’IA exactement ?
De manière vulgarisée, ce sont des machines capables de simuler l’intelligence humaine. Ces ordinateurs, de plus en plus puissants, sont aptes à apprendre à partir de données appelées data. C’est aussi le machine learning. Cette technologie qui permet d’exploiter pleinement le potentiel du Big Data. On la retrouve dans des techniques, comme le perfectionnement des systèmes d’imagerie médicale, la gestion du trafic aérien, les véhicules autonomes, les services en ligne, les assistants robots ou chatbots……
Cet article met l’accent sur l’IA dans le domaine spécifique de l’éducation tout en se posant la question suivante : la machine remplacera-t-elle l’enseignant·e et une certaine éthique peut-elle être respectée ?
Dans le milieu de l’éducation, l’IA peut aider à prévenir des situations à risque, orienter, aider à la décision et détecter les apprenant·e·s qui risquent d’avoir des difficultés dans leur parcours pédagogique.
Les possibilités de son exploitation sont infinies, il suffit de les orienter vers nos besoins. L’IA doit nous aider à éviter la surcharge cognitive ou les tâches répétitives et tout type d’analyse lourde Ce qui nous laissera du temps à consacrer à la construction de relations bienveillantes avec les apprenant·e·s.

L’IA dans l’éducation

Dans l’environnement de l’éducation, l’intégration de l’IA peut faire gagner du temps à l’enseignant·e. Le mathématicien Villani parle de “complémentarité capacitante” pour l’humain : elle l’assiste dans les corrections, la classification des données, la remontée d’incohérence dans les dossiers. Son utilisation est également pertinente pour la détection de plagiat et les suggestions pour une gestion optimale.
Avec l’IA, il est possible de personnaliser l’accompagnement. On parle dans ce cas d’adaptative learning : informations sur les connaissances de l’apprenant·e, son rythme, sa mémorisation, ses aptitudes, ses freins…Toutes ces données (datas) permettront au programme de s’adapter à l’utilisateur.
Il existe un système de tutoriel intelligent appelé MathIA. Ce dispositif pilote les activités mathématiques et suit le progrès des élèves qui s’exercent de façon ludique. Le niveau des questions est adapté aux résultats passés de chaque élève. MathIA est un “compagnon” qui a vocation à rendre l’élève acteur d’un jeu éducatif dont il est l’interprète et sur lequel il s’améliore en amassant des étoiles !
Voici un exemple de programme de simulation de comportement de professeur qui va diagnostiquer et analyser l’apprenant·e, élaborer des réponses, rétroagir et proposer un programme d’entraînement :
Une plateforme appelée Hubert.ai, Grâce à la présélection pilotée par l’IA, tire profit du nombre élevé de candidatures et automatise une grande partie du processus de présélection. Des résultats montrent : 50 % de temps gagné sur la présélection, moitié moins d’entretiens téléphoniques nécessaires et plus de 80 % d’exactitude sur la notation.
Un autre exemple avec un programme pour gérer un nombre élevé de messages postés sur un forum par des étudiant·e·s à un module en ligne sur l’IA justement. Jill, la machine, répond aux questions de ceux ou celles qui étaient en ligne et en phase d’apprentissage. Tout le monde ignorait que Jill n’était pas humain puis ce n’est qu’après un certain temps qu’ils et elles ont compris. Toutes les interactions sont dans cette capsule TEDx
Toujours dans la personnalisation de l’accompagnement, on parle de learning analytics : temps mis pour faire un exercice, quel document en ligne a-t-il été consulté ?, combien de fois ?….
Cette intelligence artificielle peut constituer une formidable opportunité de favoriser l’école inclusive : l’individualisation des parcours, la différenciation pédagogique, les interactions entre pairs…
Grâce à ces données récoltées dans l’apprentissage, l’accompagnement peut être fait tout au long de la vie tout en s’affinant pour devenir très utile.

IA versus Humain et éthique

Cette interrogation est primordiale à mon sens. Il ne faut surtout pas mettre en opposition ou en compétition l’intelligence artificielle et l’humain, mais juste tirer le meilleur profit de la machine. Nous savons que l’humain possède l’intuition, l’empathie, les aptitudes sociales, la créativité tout au long de la vie. La machine, en revanche, traite les chiffres, fait des calculs en quantité très rapidement. L’humain peut répondre à l’intelligence artificielle en posant des questions plus profondes, en sélectionnant et en combinant les réponses. Par conséquent, en guidant l’IA (Case 2018).
Le problème qui peut se poser également est l’interprétation des données collectées par l’IA. Elle peut être biaisée des deux côtés. Des moyens de collaboration entre les humains et les machines sont à espérer afin de minimiser les impacts négatifs.
Avec l’avènement de l’IA, l’une des craintes qu’elle peut justement susciter est celle autour de l’éthique. Les technopédagogues canadiens l’ont bien compris ! En effet, le centre de leur cadre de référence des compétences numériques est l’éthique. Agir de manière éthique revient à considérer la diversité sociale, culturelle et philosophique de tous les protagonistes. C’est aussi être conscient de la marchandisation de ses données personnelles.
Lors de leur traitement, ces datas doivent être de qualité en évitant les préjugés. Il faut absolument un accompagnement des experts de l’éthique afin de réfléchir aux biais des modèles, à la reproductibilité des prédictions ainsi qu’à la discrimination des sous-populations.
D’ailleurs, une des faiblesses ou limites de l’IA correspond à ces événements imprévisibles comme la Covid qui fausse tous les algorithmes qui n’ont pas mis cette variable.
Il faut donc rester vigilant face à l’IA pour que les décisions reviennent à l’humain et non à l’IA. Tout cela en ayant une logique de surveillance et en renforçant le pouvoir d’agir de l’humain. Chaque individu est unique et il est ainsi nécessaire de ne pas trop généraliser
Le sujet de “l’IA et l’éducation” constitue un pan entier de la recherche scientifique : Cette dernière suggère 4 étapes passant par :
1/ La description (ce qui s’est passé)
2/ L’analyse (pourquoi cela s’est passé ?)
3/ La prédiction (ce qu’il va se passer)
4/ La prescription (comment faire pour que ça se passe ou non ?).
Globalement, chercheurs et chercheuses sont dans l’étape d’analyse avec des tests de clustering et d’apprentissage par renforcement. Le clustering consiste à établir des groupes homogènes, mais attention aux critères pris en compte !
Par ailleurs, l’UNESCO accorde une grande importance à l’IA et les technologies éducatives (le développement durable aussi) notamment par rapport à l’éthique à travers les réunions, les rapports….
De plus, l’éducation ouverte est un exemple dont la finalité est de faciliter la transmission de la connaissance à travers les REL (Ressources Éducatives Libres).
En conclusion, on peut imaginer que l’IA est meilleure pour les réponses et que l’humain est meilleur pour les questions. Les enjeux deviennent planétaires en espérant un enseignement de l’IA à tous. C’est un vrai instrument d’aide à l’apprentissage qui va probablement bouleverser le paradigme de l’éducation.
Cependant, il faut redouter un “Netflix de l’éducation” avec des plateformes contrôlées par des géants propriétaires. L’enjeu d’une numérisation et d’un recours à l’IA serait justement de rendre la connaissance plus accessible ?. Il faudrait rendre ouvertes les datas pour éviter ces propriétaires
Il y a des propositions émanant de leur gestion de manière communautaire et s’appuyant sur un système “à la Wikipédia”.
Quant à la question du remplacement de l’enseignant par un robot, mes réponses sont les suivantes : Oui si l’enseignant·e se cantonne au dépositaire de la connaissance, Non s’il ou elle est le designer et l’organisateur de la connaissance.
Sugata Mitra a bien dit “Si un enseignant peut être remplacé par une machine, il mérite de l’être".
Comme cette IA est multidimensionnelle (éthique, efficacité, impacts sociaux et économiques), il faut mettre l’accent sur les impacts sociétaux et humains pour l’égalité ainsi que le respect de la vie privée. Cela constitue un autre défi majeur !

Licence : CC by-sa

Répondre à cet article

Qui êtes-vous ?
[Se connecter]
Ajoutez votre commentaire ici

Ce champ accepte les raccourcis SPIP {{gras}} {italique} -*liste [texte->url] <quote> <code> et le code HTML <q> <del> <ins>. Pour créer des paragraphes, laissez simplement des lignes vides.

Suivre les commentaires : RSS 2.0 | Atom